4725 Further Pure Mathematics 1

\begin{tabular}{|c|c|c|c|c|}
\hline 1 \& \begin{tabular}{l}
(i) \\
(ii) \(\left(\begin{array}{cc}1 \& 0 \\ -1 \& 1\end{array}\right)\)
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
B1 B1
\end{tabular} \& 2 \& \begin{tabular}{l}
For 2 other correct vertices seen, correct direction of shear seen For completely correct diagram, must include scales \\
Each column correct
\end{tabular} \\
\hline 2 \& \[
\begin{aligned}
\& \frac{a}{6} n(n+1)(2 n+1)+b n \\
\& a=6 \quad b=-3
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1 A1
\end{tabular} \& 5 \& \begin{tabular}{l}
Consider sum as two separate parts Correct answer a.e.f. \\
Compare co-efficients Obtain correct answers
\end{tabular} \\
\hline 3 \& \begin{tabular}{l}
(i) \(7 u^{3}+24 u^{2}-3 u+2=0\) \\
(ii) EITHER \\
correct value is \(-\frac{3}{7}\) \\
OR \\
correct value is \(-\frac{3}{7}\)
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1ft \\
M1 \\
A1
\end{tabular} \& 2
2

4 \& | Use given substitution Obtain correct equation a.e.f. |
| :--- |
| Required expression related to new cubic Their $\mathrm{c} /$ their a |
| Use $\frac{\alpha+\beta+\gamma}{\alpha \beta \gamma}$ or equivalent |
| Obtain correct answer |

\hline 4 \& | (i) $\begin{gathered}z^{*}=3+4 \mathrm{i} \\ 21+12 \mathrm{i}\end{gathered}$ |
| :--- |
| (ii) $3-5 \mathrm{i}$ $-16-30 i$ |
| (iii) $\frac{9}{25}+\frac{12}{25} \mathrm{i}$ | \& | B1 |
| :--- |
| B1 |
| B1ft |
| B1ft |
| M1 |
| A1 |
| A1 | \& 2

3

3

8 \& | Conjugate seen or implied Obtain correct answer |
| :--- |
| Correct $z-\mathrm{i}$ or expansion of $(\mathrm{z}-\mathrm{I})^{2}$ seen |
| Real part correct |
| Imaginary part correct |
| Multiply by conjugate |
| Numerator correct |
| Denominator correct |

\hline 5 \& | (i) $\left(\begin{array}{c}-13 \\ 1 \\ -10\end{array}\right)$ |
| :--- |
| (ii) $\left(\begin{array}{ccc}8 & 16 & -4 \\ 0 & 0 & 0 \\ 6 & 12 & -3\end{array}\right)$ |
| (iii) (8) | \& | B1 |
| :--- |
| B1 |
| M1 |
| A1A1A1 |
| M1 |
| A1 | \& 2 \& | 4B seen or implied or 2 elements correct Obtain correct answer |
| :--- |
| Obtain a 3×3 matrix Each row (or column) correct |
| Obtain a single value Obtain correct answer, must have matrix |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline 6 \& \begin{tabular}{l}
(i) \\
(ii)
\[
2 \sqrt{3}+2 i
\]
\end{tabular} \& \[
\begin{array}{|l}
\hline \mathrm{B} 1 \\
\mathrm{~B} 1 \\
\mathrm{~B} 1 \\
\mathrm{~B} 1 \\
\mathrm{~B} 1 \\
\\
\mathrm{~B} 1 \\
\mathrm{M} 1 \\
\mathrm{~A} 1 \\
\hline
\end{array}
\] \& 3 \& \begin{tabular}{l}
Horizontal straight line in 2 quadrants \\
Through (0, 2) \\
Straight line \\
Through \(O\) with positive slope \\
In \(1^{\text {st }}\) quadrant only \\
State or obtain algebraically that \(y=2\) \\
Use suitable trigonometry \\
Obtain correct answer a.e.f. decimals OK must be a complex number
\end{tabular} \\
\hline 7 \& \begin{tabular}{l}
(i)
\[
a=-6
\] \\
(ii) \(\quad \mathbf{A}^{-1}=\frac{1}{a+6}\left(\begin{array}{cc}1 \& -3 \\ 2 \& a\end{array}\right)\)
\[
x=\frac{4}{a+6}, y=\frac{2-a}{a+6}
\]
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
B1 \\
B1ft \\
M1 \\
A1ft \\
A1ft
\end{tabular} \& 2

5

7 \& | Use $\operatorname{det} \mathbf{A}=0$ |
| :--- |
| Obtain correct answer |
| Both diagonals correct |
| Divide by $\operatorname{det} \mathbf{A}$ |
| Premultiply column by \mathbf{A}^{-1}, no other method Obtain correct answers from their \mathbf{A}^{-1} |

\hline 8 \& | (i) $u_{2}=4, u_{3}=9, u_{4}=16$ |
| :--- |
| (ii) $u_{\mathrm{n}}=n^{2}$ |
| (iii) | \& \[

$$
\begin{array}{|l|}
\hline \text { M1 } \\
\text { A1 } \\
\text { B1 } \\
\text { B1 } \\
\text { M1 } \\
\text { A1 } \\
\text { A1 }
\end{array}
$$
\] \& 2

1

4

7 \& | Obtain next terms All terms correct |
| :--- |
| Sensible conjecture made |
| State that conjecture is true for $n=1$ or 2 |
| Find u_{n+1} in terms of n |
| Obtain $(n+1)^{2}$ |
| Statement of Induction conclusion |

\hline 9 \& | (i) $\alpha^{3}+3 \alpha^{2} \beta+3 \alpha \beta^{2}+\beta^{3}$ |
| :--- |
| (ii) Either $\alpha+\beta=5, \alpha \beta=7$ $\alpha^{3}+\beta^{3}=20$ $x^{2}-20 x+343=0$ |
| Or $\begin{aligned} & u^{\frac{2}{3}}-5 u^{\frac{1}{3}}+7=0 \\ & u^{3}-20 u+343=0 \end{aligned}$ | \& | M1 |
| :--- |
| A1 |
| B1 B1 |
| M1 |
| A1 |
| M1 |
| A1ft |
| M1 A1 |
| M2 |
| A2 | \& 2

6

8 \& | Correct binomial expansion seen |
| :--- |
| Obtain given answer with no errors seen |
| State or use correct values |
| Find numeric value for $\alpha^{3}+\beta^{3}$ |
| Obtain correct answer |
| Use new sum and product correctly in quadratic expression |
| Obtain correct equation |
| Substitute $x=u^{\frac{1}{3}}$ |
| Obtain correct answer |
| Complete method for removing fractional powers |
| Obtain correct answer |

\hline
\end{tabular}

